

Foundations Work Stream

Technical Complexity Workshop on Monday 30, Jan 2023

Oli de Weck FuSE Foundations Lead

Agenda.

- Stream Intro (15 min) General overview of the SE Foundations stream
- Technical Complexity (45 min) Definition of Organizational Complexity and Examples
- Case Study (45 min) Aircraft Engines(1950-2020)
- Discussion (15 min) Feedback and Q&A related to the topic

Agenda.

- Stream Intro (15 min) General overview of the SE Foundations stream
- Technical Complexity (45 min) Definition of Organizational Complexity and Examples
- Case Study (45 min) Aircraft Engines(1950-2020)
- Discussion (15 min) Feedback and Q&A related to the topic

The FuSE program is organized in 4 streams with additional central teams

The Foundations Stream's objectives during IW.

The SE Foundations stream aims to:

- Validate (or refute) the proposed First Law of Systems Science and Engineering: "Conservation of Complexity"
- Elaborate the drivers of technical complexity
- Elaborate the drivers of organizational complexity
- Create an *inventory* of existing SE Foundations and tag their status as: (i) proposed, (ii) validated or (iii) adopted in SE practice

Three Dimensions of Complexity in Systems Engineering

Agenda.

- Stream Intro (15 min) General overview of the SE Foundations stream
- Technical Complexity (45 min) Definition of Organizational Complexity and Examples
- Case Study (45 min) Aircraft Engines(1950-2020)
- Discussion (15 min) Feedback and Q&A related to the topic

Dimensions of Complexity in System Development:

These dimensions of complexity in system development context are positively correlated [Riedl 2000, Lindemann 2009,10, Kreimeyer, 2011]. Technical Complexity reflects the functional and structural elements of the system.

Complexity Typology for Engineered Systems

Relationship with Existing Complexity Literature

Construct Validity: Weyuker's Criteria

Graph Energy stands out as both computable and satisfies Weyuker's criteria and establishes itself as a theoretically valid measure (i.e., construct validity) of complexity.

Complexity Measure	Computability	Aspect emphasized	Weyuker's Criteria
Number of components [Bralla, 1986]	V	Component development (count-based measure)	×
Number of interactions [Pahl and Beitz, 1996]	~	Interface development (count-based measure)	×
Whitney Index [Whitney <i>et al.</i> , 1999]	~	Components and interface developments	×
Number of loops, and their distribution []	×	Feedback effects	×
Nesting depth [Kerimeyer and Lindemann, 2011]	×	Extent of hierarchy	×
Graph Planarity [Kortler <i>et al.</i> , 2009]	~	Information transfer efficiency	×
CoBRA Complexity Index [Bearden, 2000]	~	Empirical correlation in similar systems	×
Automorphism-based Entropic Measures [Dehmer <i>et al</i> ., 2009]	×	Heterogeneity of network structure, graph reconfigurability	V
Matrix Energy / Graph Energy	~	Graph Reconstructabality	~

System Hamiltonian and Structural Complexity

С

$$\varepsilon_{\pi} = n\alpha + \beta \sum_{i=1}^{n} h_{i} \sigma_{i} \le n\alpha + \beta \underbrace{\left(\sum_{i=1}^{n} h_{i}\right)}_{n} \underbrace{\left(\sum_{i=1}^{n} \sigma_{i}\right)}_{E(A)}$$
$$\therefore \varepsilon_{\pi} \le n\alpha + n^{2} \beta \underbrace{\left(\frac{E(A)}{n}\right)}_{n}$$

⁰ if there is no chemical bond between the atoms *i* and *j*. Introduce the notion of *configuration energy*:

$$\Xi := \underbrace{n\hat{\alpha}}_{C_1} + \underbrace{m\hat{\beta}}_{C_2} \underbrace{\left(\frac{E(A)}{n}\right)}_{C_3} = C_1 + C_2 C_3$$

Use the above functional form to measure the complexity associated with system structure – *Structural Complexity* of the system where α 's stand for component complexity while β 's stand for interface complexity:

$$H\psi = \varepsilon\psi$$
$$|\varepsilon_i| = \alpha + \beta\sigma_i; \ \varepsilon_{\pi} = \sum_{i=1}^n h_i |\varepsilon_i|$$

 $H = \alpha I + \beta A(G)$

$$= C_1 + C_2 C_3$$

= $\sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \left(\frac{E(A)}{n}\right) = \sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \gamma E(A)$

C3 Topological Complexity: Important Properties

Empirical Data: Complexity Increase of Engines

Complexity increase +42%

	(C ₁	(C ₂	0	C ₃		С	C/	С _{мL}	
	Old	New	Old	New	Old	New	Old	New	Old	New	e new / e old
Most Likely	161	188	126	184	1.51	1.69	351	499	1	1	1.42
Mean	179	244	141	240.4	1.51	1.69	392	650.3	1.12	1.30	1.65
Median	178	242	139	238.9	1.51	1.69	388	646.8	1.10	1.29	1.66
70 percentile	181	247.9	145	246.2	1.51	1.69	399.6	663.94	1.14	1.33	1.66

Trend towards more distributed architecture with higher structural complexity and significantly higher development cost^{*}.

Discussion: Technical Complexity

- 1. How would you *define* technical complexity?
- 2. How do you currently *quantify* technical complexity? How should it be done?
- 3. Has technical complexity *increased* in your domain over time? How much? Why?
- 4. How would you actively *manage* technical complexity?

Agenda.

- Stream Intro (15 min) General overview of the SE Foundations stream
- Technical Complexity (45 min) Definition of Organizational Complexity and Examples
- Case Study (45 min) Aircraft Engines(1950-2020)
- Discussion (15 min) Feedback and Q&A related to the topic

Aviation's progress over the last 80+ years is impressive

Bréguet Range Equation

h : fuel energy per unit mass (specific energy)

g: Earth's average gravity at the surface $g=9.81 \text{ m/s}^2$.

L/D: Lift over drag ratio at cruise.

noverall: Overall efficiency

W_{inital}: Gross takeoff weight of the aircraft

 W_{final} : "Final" weight of the aircraft including the dry mass of the aircraft

V: Cruise speed, also denoted as v_{∞} or u_{o} .

SFC: Specific Fuel Consumption: this is the amount c fuel burned per unit time per unit of thrust, i.e. units of [kg/s/N].

where SFC = mass flow of fuel per unit thrust (kg/s/N or lbm/hr/lbf)

Progress in Engine Technology

Improvement in Fuel Consumption (SFC) was achieved by increasing complexity

2x improvement since 1950's through:

- Multi-stage compressors and turbines
- High BPR
- Fan-Drive Gear System

PW-1500 Geared Turbofan Engine 2020

Where do we go from here?

Too much complexity in exchange for performance?

Performance

"Most efficient engine ever tested" Jane's Aero Engines, 2010

Complexity

Complex, never certified

- 2 counter-rotating variable pitch fans
- Counter-rotating gearboxes
- 3 spools

Kuznetsov NK-93/94:

Discussion: Case Study Engines

- 1. Do you think aircraft jet engines have reached the "maximum value" point of complexity?
- 2. How will electric propulsion or hydrogen change the equation (next S-Curve)?
- 3. What other case studies would you propose to map the evolution of technical complexity over time?
- 4. How can (MB)SE be used to better manage complexity?

Agenda.

- Stream Intro (15 min) General overview of the SE Foundations stream
- Technical Complexity (45 min) Definition of Organizational Complexity and Examples
- Case Study (45 min) Aircraft Engines(1950-2020)
- Discussion (15 min) Feedback and Q&A related to the topic

Session Wrap-up: Technical Complexity

- **Part 1:** Definition and quantification of technical complexity
- **Part 2:** Case Study: Aircraft Engines
- Inputs from all groups will be collected and summarized in a white paper, which will be provided to participants

FuSE at IW 2023 overview

	SAT	SUN	MON	TUE	
08:00					
08:30		FuSE Stream Working Sessions	FuSE Stream Working Sessions 4 rooms (in person only)	Wrap-up FuSE	
09:00		4 rooms (in person only)		(for participants)	
09:30	Break				
10:00	Euse Kick off		Break		
10:30	TUSE NICK-OIT				
11:00				Wrap-up FuSE	
11:30					
12:00			nch		
12:30		Lu	non		
13:00					
13:30					
14:00	FuSE Stream Working Session		Roome fe		
14:30	4 rooms (in person only)		B Vision & De	USE Stream Sessions:	
15:00	Break		Foundation	admaps Stream: Ballroom	
15:30			Methodolog	Stream: Salon A	
16:00	FuSE Steam Working Session 4 rooms (in person only)		Application	Extensions of	
16:30				Salon C	

Systems Engineering Foundations Stream

Oli de Weck Stream Lead "SE Foundations"

e deweck@mit.edu

In order to yield predictable results Systems Engineering methods and tools need to be built on foundational principles that are provably true and based on laws and axioms that can be tested for falsifiability similar to those in other well-established disciplines of science and engineering like Chemical Engineering, Electrical Engineering or Biological Engineering. This stream will formulate a set of candidates underlying Laws of Systemics, the science at the foundation of Systems Engineering.

The IW 2023 goal is to assess the foundational value of the "Conservation of System Complexity," which parallels the Conservation of Energy in the First Law of Thermodynamics and the Conservation of Mass in continuum mechanics.

	SAT	SUN	MON	TUE	
08:00					
08:30		FuSE Interactive working session	FuSE Working Sessions on	Wrap-up FuSE	
09:00		on technical complexity	organizational complexity	(for participants)	
09:30	Break				
10:00	Euse Kiek off	Break			
10:30	FUSE NICK-OII				
11:00				Wrap-up FuSE	
11:30					
12:00		Lunch			
12:30		Lunon			
13:00					
13:30					
14:00	FuSE Interactive working session				
14:30	Frame SE Foundations		Break		
15:00	Break				
15:30	FuSE Interactive working session				
16:00	Conduct complexity experiment Frame SE Foundations				
16:30					

Systems Engineering Foundations Stream

Oli de Weck Stream Lead "SE Foundations"

e deweck@mit.edu

In order to yield predictable results Systems Engineering methods and tools need to built on foundational principles that are prov and based on laws and axioms that car tested for falsifiability similar to those in well-established disciplines of science engineering like Chemical Engineering. Engineering or Biological Engineering. stream will formulate a set of candidates underlying Laws of Systemics, the science at the foundation of Systems Engineering.

The IW 2023 goal is to assess the foundational value of the "Conservation of System Complexity," which parallels the Conservation of Energy in the First Law of Thermodynamics and the Conservation of Mass in continuum mechanics.

		SAT	SUN	MON	TUE
	08:00				
	08:30				Wrap-up FuSE
	09:00				(for participants)
	09:30	Break			
	10:00			Break	
Δ					
	N.				Wrap-up FuSE
lav	/ — Eu				
i ci y		SE wrap-up Sessior	n (Bill Miller)		
	13:00	SE wrap-up Sessior	n (Bill Miller)		
Ð	13:00 13:30	SE wrap-up Sessior	n (Bill Miller)		
e	13:00 13:30 14:00	FuSE Interactive working session	n (Bill Miller)		
9	13:00 13:30 14:00 14:30	FuSE Interactive working session Conduct complexity experiment Frame SE Foundations	n (Bill Miller)	Break	
Ð	13:00 13:30 14:00 14:30 15:00	FuSE Interactive working session Conduct complexity experiment Frame SE Foundations Break	n (Bill Miller)	Break	
e f	13:00 13:30 14:00 14:30 15:30	FuSE Interactive working session Conduct complexity experiment Frame SE Foundations Break FuSE Interactive working session	n (Bill Miller)	Break	
e f	13:00 13:30 14:00 14:30 15:00 15:30 16:00	FuSE Interactive working session Conduct complexity experiment Frame SE Foundations Break FuSE Interactive working session Conduct complexity experiment Frame SE Foundations	n (Bill Miller)	Break	

Let's connect.

Or find us on www.incose.org/fuse

Bill Miller FuSE Program Lead

e William.Miller@incose.net

Stephan Finkel PMO Contractor | 3DSE

e Stephan.Finkel@incose.net

Oli de Weck Stream Lead "SE Foundations"

Paul Schreinemakers

e paul.schreinemakers@incose.net

Stream Lead "SE Vision & Roadmaps"

e deweck@mit.edu

Martina Feichtner PMO Contractor | 3DSE

e Martina.Feichtner@incose.net

Chris Hoffman Stream Lead "SE Methodologies"

e christopher.hoffman@incose.net

Tom Strandberg Stream Lead "SE Application Extensions"

e tom.strandberg@incose.net

Login

Return to INCOSE Home

FUTURE OF SYSTEMS ENGINEERING (FUSE)

Vision: Inspire the global community to realize the SE Vision

Home / About Systems Engineering / Future of Systems Engineering - FuSE

The FuSE Program is organized in 4 streams.

Vision & Roadmaps

Foundations

Methodologies

Application Extensions

Future of Systems Engineering

© 2022 INCOSE, LLC. All rights reserved.