

Chapter Presentation INCOSE Systems Engineering Handbook Fifth Edition Updating the Reference for Practitioners

Revision Date 5 Oct 2023

Dave WALDEN, ESEP – INCOSE SE Handbook Editor-in-Chief (EIC) (Americas Sector)

Tom SHORTELL, CSEP – INCOSE SE Handbook Deputy EIC (Americas Sector)

Garry ROEDLER, ESEP – INCOSE SE Handbook Editor (Americas Sector)

Bernardo DELICADO, ESEP – INCOSE SE Handbook Editor (EMEA Sector)

Odile MORNAS, ESEP – INCOSE SE Handbook Editor (EMEA Sector)

YIP Yew-Seng, CSEP – INCOSE SE Handbook Editor (Asia Oceania Sector)

David ENDLER, ESEP – INCOSE SE Handbook Editor (EMEA Sector)

Copyright ©2023 by The Handbook Editorial Team. Permission granted to INCOSE to publish and use.

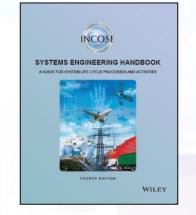
- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

Presenter Introduction Dave Walden, INCOSE ESEP & Founder

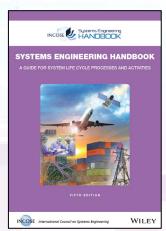
- Over 40 Years of Industry Experience
 - Principal Consultant & Instructor at Sysnovation since 2006. Teaching and consulting in various industries, including agriculture, automotive, biomedical & healthcare, consumer goods, defense & aerospace, government departments/agencies, power & energy, and professional services
 - Sysnovation core courses include:
 - SE Principles, Leading SE Exec Overview, Enabling SE Overview for Non-SEs, Requirements Formulation, SE Tool Belt, COTS-Based SE (CBSE), Brownfield SE, System of Systems Engineering (SoSE), Beyond Greenfield Systems Engineering, Leading Effective Technical Reviews, Soft Skills for SEs, INCOSE SEP Prep
 - Also taught for ATI, CESAMES, CSM, Iowa State University, K2B, University of Minnesota, Purdue University, Strategy Bridge, and Vitech
 - Sysnovation core consulting areas include:
 - Coaching/mentoring, non-advocacy reviews, major review preparation, and process improvement
 - Lead Editor/Editor-in-Chief of the INCOSE SE Handbook Fourth & Fifth Editions, Co-Editor Since v3.2
 - INCOSE representative in ISO/IEC JTC 1 / SC 07 / WG 10, and WG 22 (Software and systems engineering process assessments and terminology, respectively)
 - INCOSE Certification Program Manager 2007-2013
 - 13 years at General Dynamics Advanced Information Systems
 - Director/SE IPT Lead for the FCS ICS SoS Program
 - Director of Integrated Process and Quality
 - Systems Engineering lead on numerous programs
 - 10 years at McDonnell Douglas (now Boeing)
 - Avionics analyst on the F-15, YF-23, and IRAD/CRAD
- Education:
 - MS MOT (Mgmt of Technology) University of Minnesota
 - MS EE & MS CS Washington University in St. Louis
 - BS EE Valparaiso University

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

The SE Handbook - Our Flagship Product

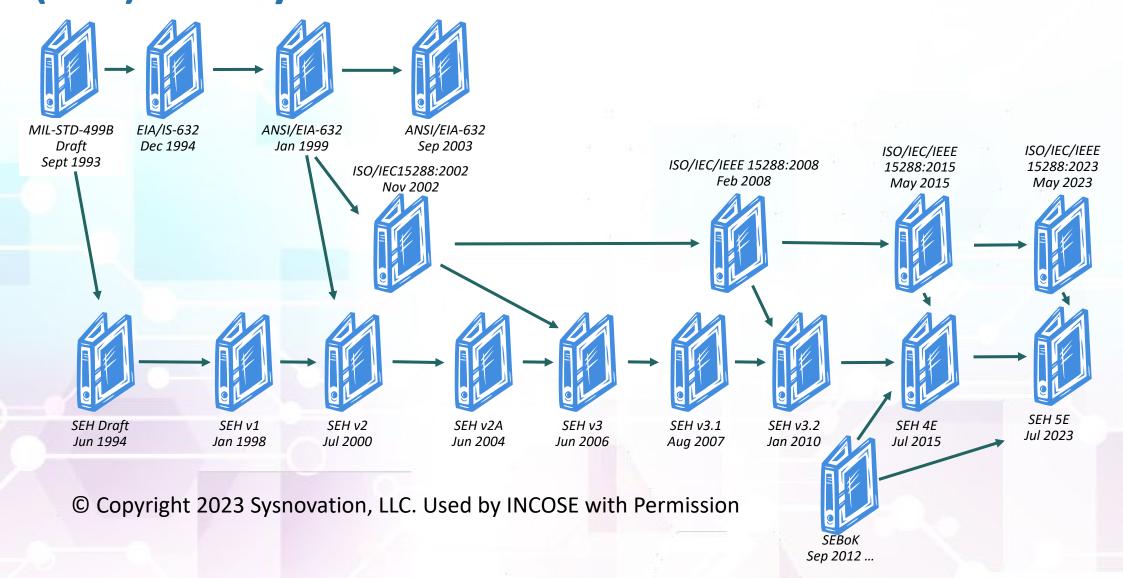


- The INCOSE SE Handbook (SEH)
 - Reflects the state-of-the-good-practice of Systems Engineering
 - Based on ISO/IEC/IEEE 15288
 - Further elaborates the processes and activities to execute the processes
 - Inputs from the entire INCOSE Technical Community


Serves as a reference of practices and methods that have proven

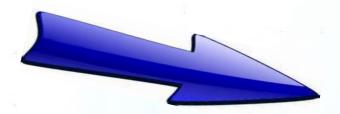
beneficial to the SE community at large

- Fourth Edition published in July 2015
- Fifth Edition to be published in July 2023



The SEH serves as the basis for the INCOSE CSEP & ASEP exams.

INCOSE Systems Engineering Handbook (SEH) History


Three Main SEH Inputs

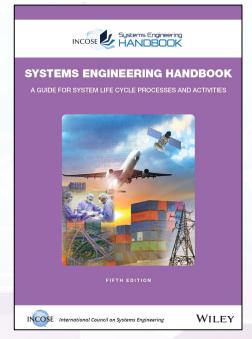
ISO/IEC/IEEE 15288 standard

- Developed by the consensus of SE experts from government, industry, and academia
- Defines a set of processes and associated terminology



INCOSE Working Groups

- Subject Matter Experts from the INCOSE technical community serve as section authors
- Handbook includes summaries and pointers to INCOSE Working Group products



SE Body of Knowledge (SEBoK)

- Reflects the state-of-the-knowledge of Systems Engineering
- Provides a widely accepted, community-based, and regularly updated wiki-based baseline of SE knowledge

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

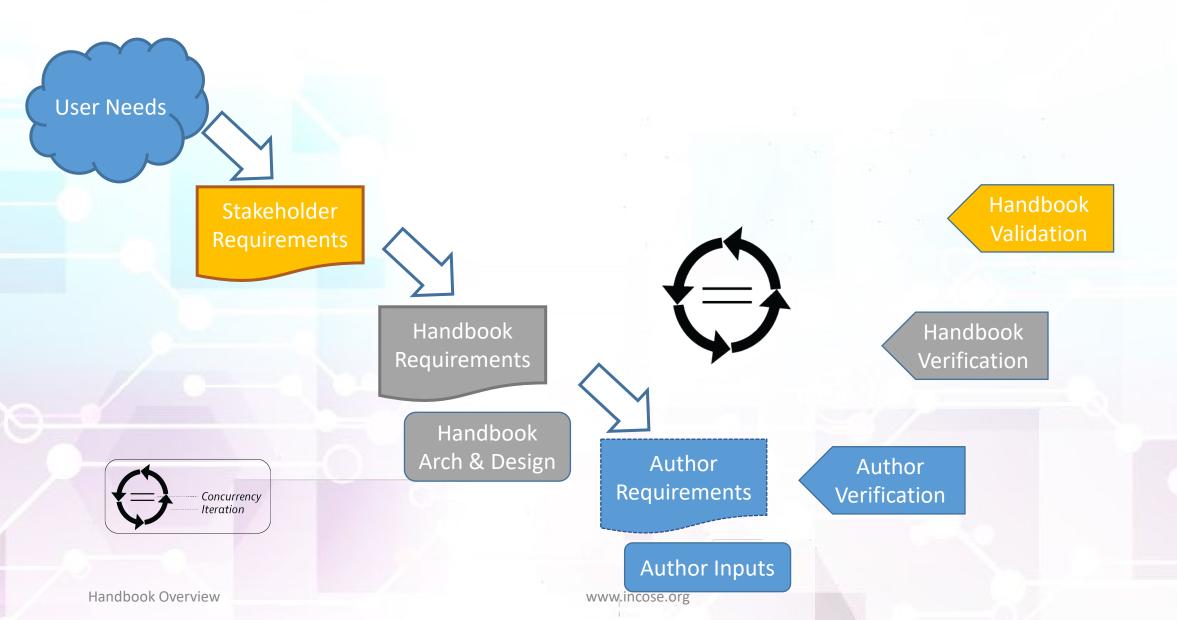
Motivations for Handbook Update

Since the INCOSE Systems Engineering Handbook reflects the state-of-the-good-practice of Systems Engineering, it generally is updated every 5-8 years to capture/incorporate:

- Changes in Systems Engineering due to improved principles, processes, methods, and tools
 - Add topics
 - Remove topics
 - Refresh other topics
- Updated versions of systems engineering standards (e.g., ISO/IEC/IEEE 15288)
- Reflect the updated vision and new challenges in Systems Engineering

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

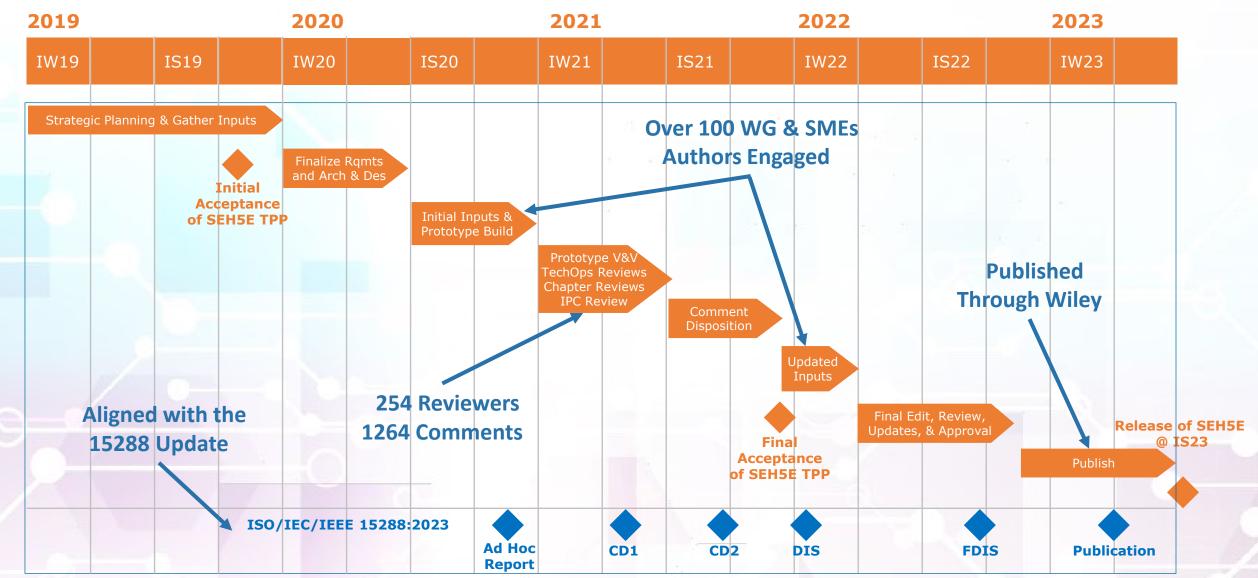
Background



- We followed a tailored version of our SE process to create our SE Handbook
- Our system of interest (SoI) is the INCOSE SE Handbook 5E (in all of its instantiations – hardcopy, electronic, etc.)

Handbook Overview www.incose.org 11

SEH5E Development Process Overview INCOSE HANDBOOK


12

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

INCOSE SE Handbook 5E Schedule

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

Key Inputs for the SE Handbook 5E

IW/IS Input Sessions

Survey

- Keep
- Remove
- Modify
- New
- Other

INCOSE CAB

23 Responses

INCOSE WGs

27 Responses

INCOSE CAG

16 Inputs

INCOSE Fellows

13 Responses

Certification Training Providers

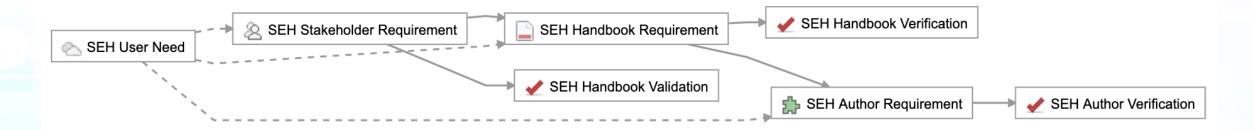
3 Responses

Handbook Requirements

> Handbook Arch & Design

> > Author Requirements

Summary of Handbook Inputs



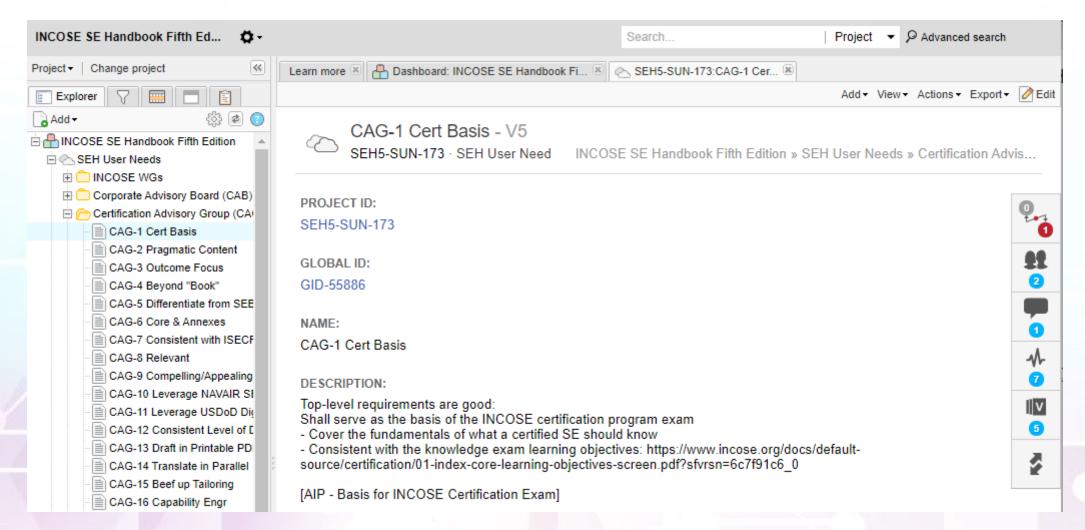
- Topics
 - New Fellows Definitions of System and SE.
 - Model-Based SE (including beyond SysML)
 - Digital Engineering & Digital Twins
 - Agile SE & DEVSECOPS & Continuous Integration
 - Product Line SE & Reuse
 - Patterns-Based SE
 - Lean SE
 - Cyber Security & Cyber-Physical Systems
 - Connected Services
 - SE Value Proposition
 - Human-Centered Design
 - Model-Based Conceptual Design
 - SE Principles
 - 4th Industrial Revolution & Fast Innovations Cycles
 - Big Data & IoT
 - Machine Learning & Al
 - Natural Systems
 - Cognitive Skills & Soft Skills
 - Best Practices & Pragmatic Application Guidance
 - Deployment Guidance

- Topics (cont.)
 - Benchmarking Information
 - Updated Case Studies
 - Incorporate Latest SE Standards
 - Incorporate INCOSE Products (including partners)
- Architecture & Design
 - Throw Away and Start Over
 - Shorter
 - Longer
 - More Compelling/Appealing
 - Multi-Part
 - Part 1: Domain-Neutral
 - Parts 2-n: Domain-Specific
 - Reorganize (multiple suggestions)
 - Align with INCOSE SE Competency Framework
- Formats
 - e-Documents
 - Web-Enabled
 - Parameterized & "Customizable"
 - (Executable) Model of the Process(es)

Jama Relationship Diagram for SEH5E INCOSE

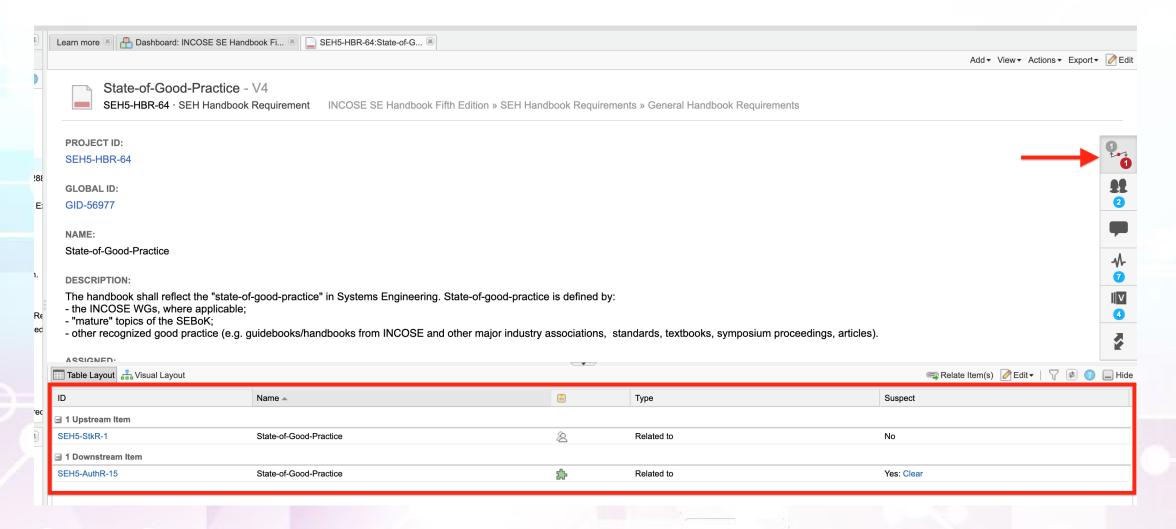
- Tailored to match our handbook process terminology
- Solid lines represent required relationships
- Dashed lines represent optional relationships

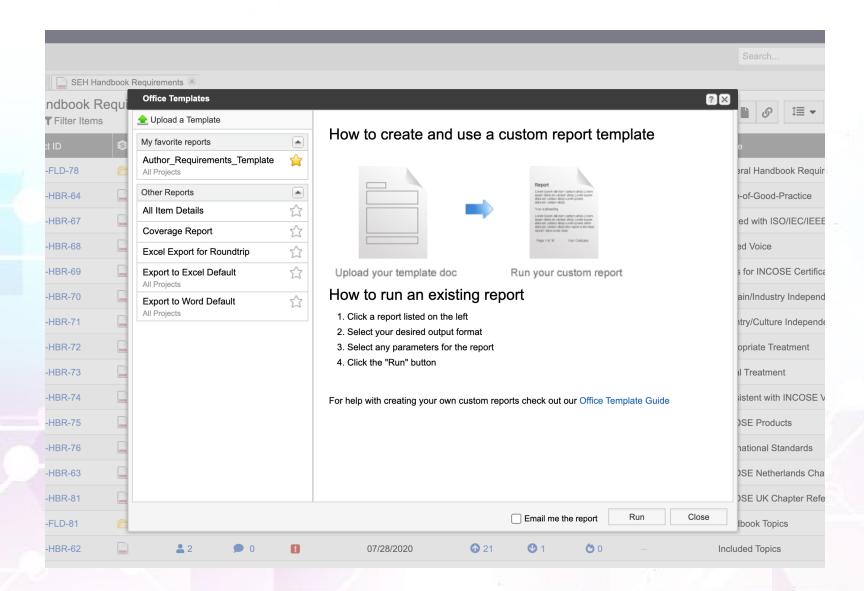
Key Requirement Modeling Concepts



- Purpose of the requirements model
 - Manage the large volume of handbook inputs and requirements
 - Enable editorial team communication
 - Enable the disposition of the inputs

- Guiding modeling concepts
 - Minimize tool customizations (use "out of the box" to the extent practicable)
 - Map the tool schema to the handbook process and terminology
 - Leverage traceability to establish relationships between the various sets of requirements


Single Item View – User Need Example INCOSE HANDBOOK


Jama Connect Relationships – System Requirement Traceability Example

Jama Connect Documentation Creation

INCOSE SEH5E Driving Stakeholder Requirements

INCOSE Systems Engineering HANDBOOK

- Shall reflect the "state-of-the-good-practice" in Systems Engineering
 - Defined by the INCOSE WGs, where applicable
 - Consistent with international standards
 - Include the "mature" topics of the SEBoK
 - Include other relevant good practice (e.g., textbooks, articles)
- Shall be aligned with ISO/IEC/IEEE 15288
 - Should be aligned with the SEBoK
 - Should be aligned with INCOSE products
- Shall serve as the basis of the INCOSE certification program exam
- Shall be domain/industry independent
 - But should show guidance for different domains
- Shall be country/culture independent
- Should be a "reasonable" size (however, no explicit page limitation)
 - "Appropriate treatment" of SE topics based on "relative importance"
 - "Equal" treatment of "similar" topics (e.g., each ility approx. the same)
 - Cover the fundamentals of what a certified SE should know
 - Reference more detailed INCOSE products

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

Structure of 4 th Edition			Front Matter				
	Chapter 1 - Systems Engineering Handbook Scope	Chapter 2 - Systems Engineering Overview		Chapter 3 – Generic Lifecycle Stages		Chapter 4 – Technical Processes	Chapter 5 – Technical Management processes
	Chapter 6 – Agreement Processes	Chapter 7 – Organization Project- Enabling Processes		Chapter 8 – Tailoring process and Application of Systems Engineering		Chapter 9 – Cross- cutting Systems Engineering Processes	Chapter 10 – Specialty Engineering Activities
Handbook Overview Wywinconcers							

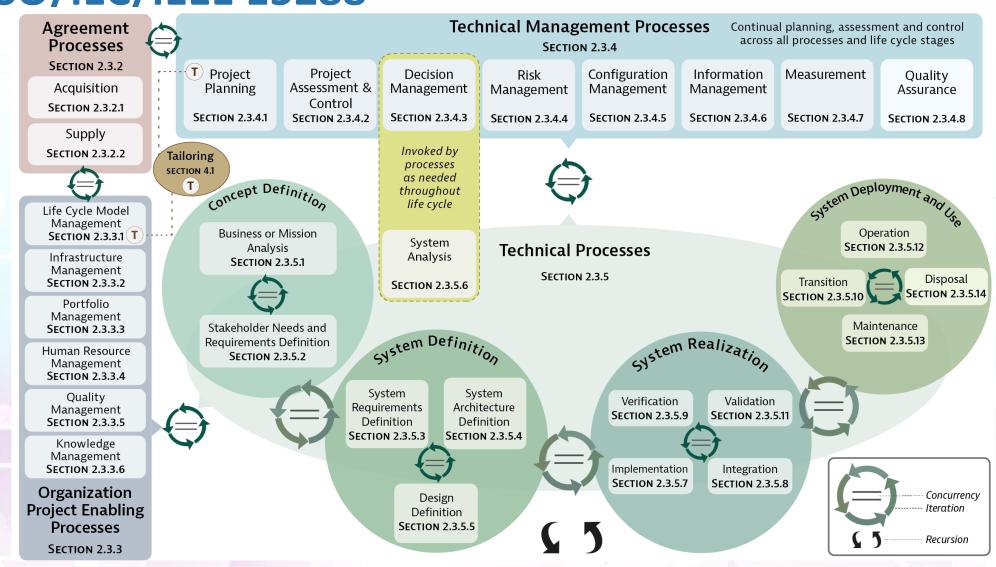
Major Changes for SEH 4E to 5E

- Significantly restructured the handbook due to the changes and new topics
- Moved to single-column format for improved readability/accessibility
- Provided more focus on foundational concepts, to provide reader with overview perspectives
- Kept alignment with the 15288 processes, reordered them to be consistent with the 15288 order
- Updated the IPO diagrams to be more "model and information centric"
- Added new topics like Brownfield, COTS, IoT/Big Data, Cyber-Physical Systems (CPS), Natural Systems, Digital Engineering, etc. based on stakeholder inputs
- Elaborated more on the practices of SE in terms of competencies/soft skills and relationship to other domains
- Engaged a graphic designer for key "impactful" figures
- Added additional domain-specific applications and support for domain annexes

Front Matter

Appendices

Removed Sections from the 4E to 5E



- 2.11.2 Professional Certification
- 3.5 What is Best for Your Organization, Project, or Team?
- 3.6.3 Case 3: Prototype System—The Superhigh-Speed Train in China
- 8.6 Application of SE for Very Small & Micro Enterprises
- 9.3 Functions-Based Systems Engineering Method
- 9.7 Integrated Product and Process Development
- 10.2 Electromagnetic Compatibility
- 10.7 Mass Properties Engineering
- 10.12 Training Needs Analysis
- 10.14 Value Engineering

Note 1: Does not include sections that were renamed between the 4E and 5E. Note 2: Some of these 4E sections have been absorbed into other 5E topics.

Figure 2.10 System life cycle processes per ISO/IEC/IEEE 15288

www.incose.org

Common IPO Format

Common for all processes. Not repeated on each IPO diagram

Controls

- · Applicable laws and regulations
- Standards
- Agreements
- Organization policies
- Project direction
- Project constraints
- Project control request

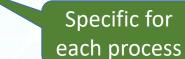
Typical Inputs

Typical inputs to a given system life cycle process

Specific for each process

Specific for each process

Common for all processes. Not repeated on each IPO diagram


Activities

The activities of a given system life cycle process

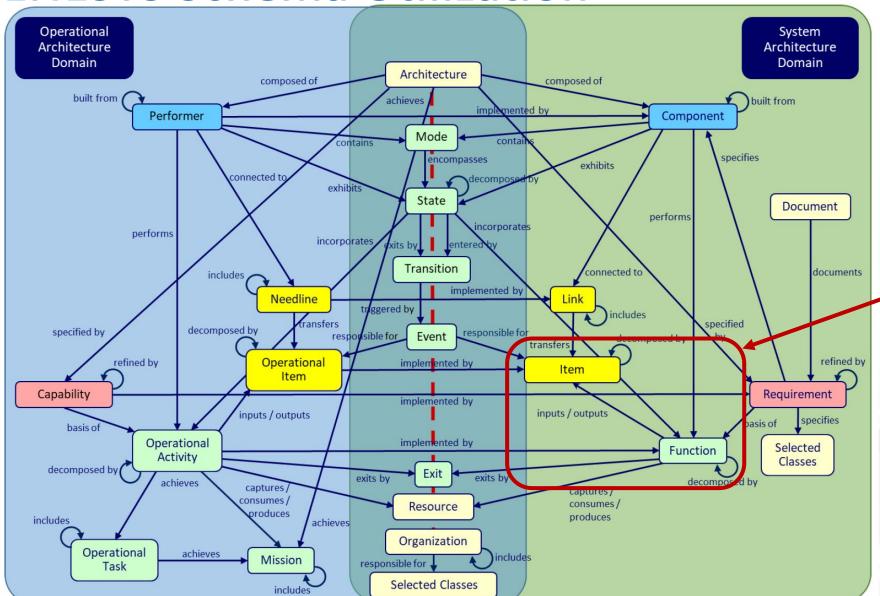
Typical Outputs

 Typical outputs from a given system life cycle process

Enablers

- Organization processes
- · Organization procedures
- Organization infrastructure
- Quality management system
- Knowledge management system
- Project infrastructure
- Decision register
- Risk register
- Configuration management system
- Information register
- Measurement register
- Quality assurance system
- Traceability mapping
 Enabling systems

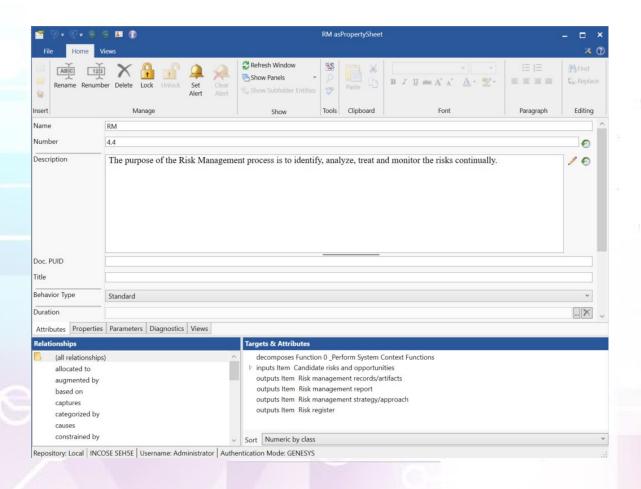
Key Process Modeling Concepts



- Purpose of the process model
 - Ensure a consistent set of IPO diagrams
 - Help create a process N² diagram
 - Not required to be "executable" depends on project/system & methodology
- Goals
 - Continuity with 3rd & 4th Editions
 - Consistent with:
 - ISO/IEC/IEEE 15288
 - ISO/IEC/IEEE 15289
 - ISO/IEC/IEEE 24765 & SEVOCAB
 - ISO/IEC 33060

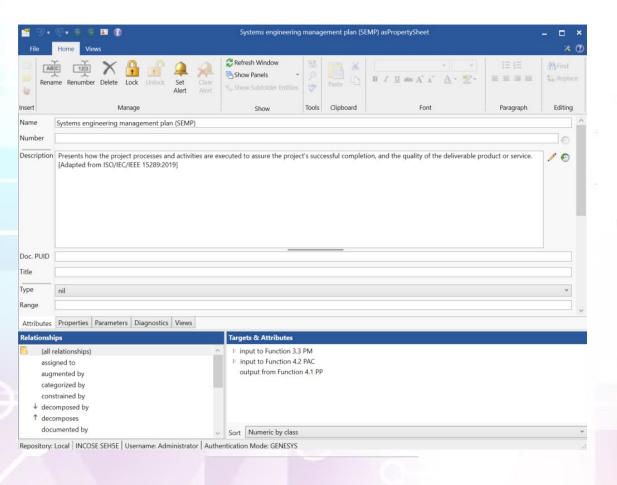
- Guiding modeling concepts
 - Minimize tool customizations (use "out of the box" to the extent practicable)
 - The Sol is the set of 15288/ Handbook system life cycle processes
 - Represents "a" way, not "the" way the processes can be connected
 - Emphasize "typical" inputs & outputs
 - When needed, assumes a traditional contracted greenfield system development
 - Assumes tailoring as required
 - Transition from "documentation-centric" to "model- and information-centric"
 - Eliminates the "Initial-Draft-Updated-Finaletc." items in the 4E
 - Support both "sequential" and "situational" processes
 - Support the concurrent, iterative, and recursive nature of the processes
 - Express consistent patterns

GENESYS Schema Utilization



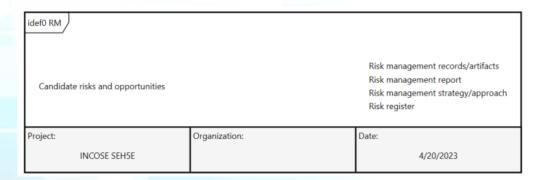
Parts of Schema Used

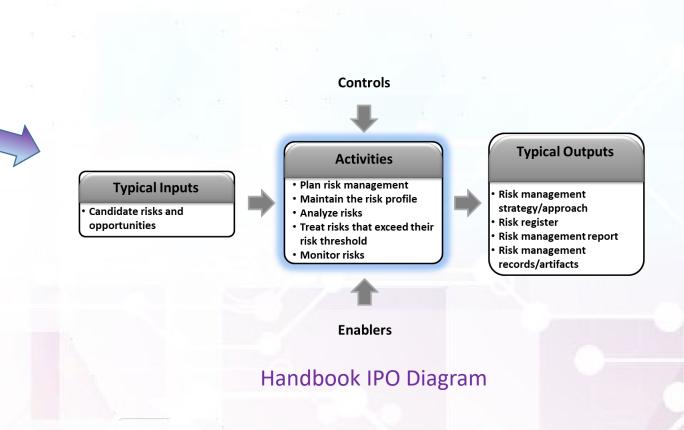
GENESYS Function Example



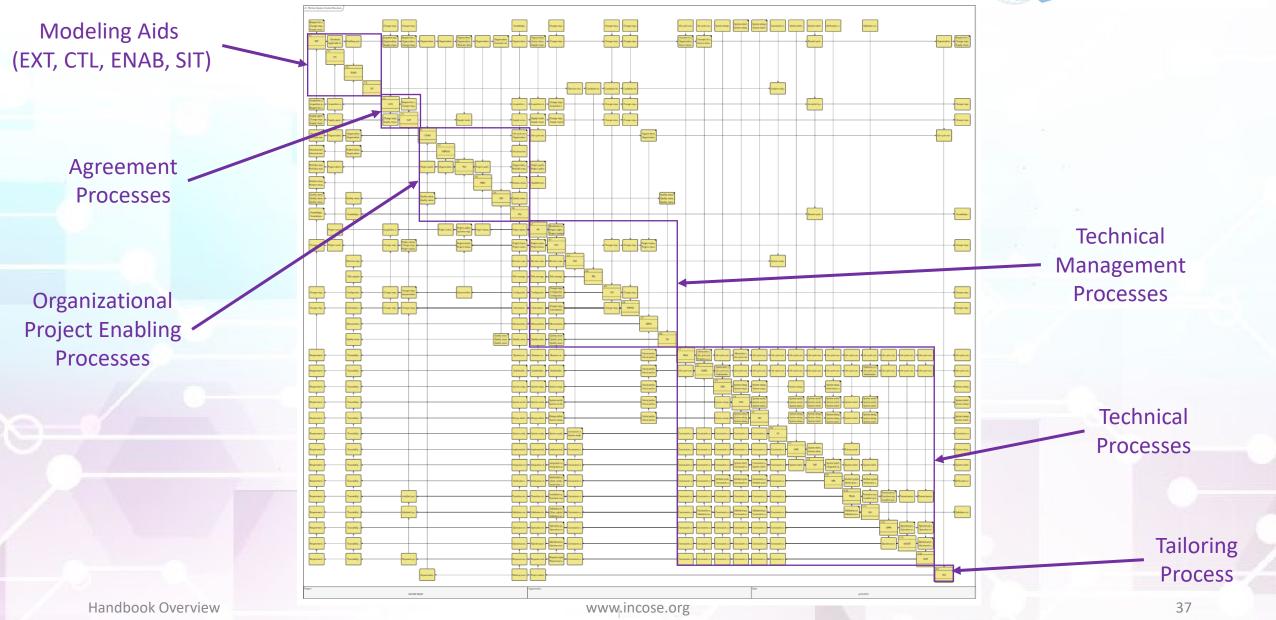
- Each of the handbook/15288 life cycle processes is a separate GENESYS function
 - Names are the process acronyms
 - Numbered to ensure they are listed in the correct order
 - Descriptions come from 15288
- They all decompose the functional context (to allow for an overall N² diagram)
- We created some additional "functions" for our purposes:
 - EXT External (to our Sol)
 - CTL Controls (go to all processes)
 - ENAB Enablers (go to all processes)
 - SIT Situational (can come from any process)
- Our SEH5E model has 36 functions

GENESYS Item Example



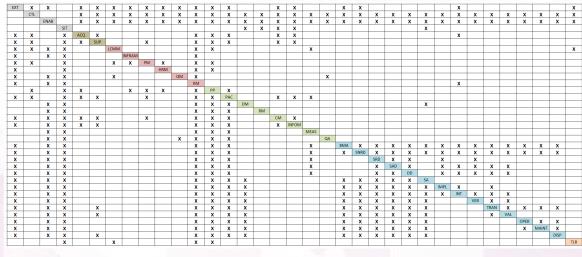

- Each "Typical Input" and "Typical Output" is a separate GENESYS
 item
 - Names reflect the handbook IPO diagrams and Appendix E
 - Numbering not needed (since the IPO diagrams require reformatting)
 - Descriptions match handbook Appendix E
- Primary item relationships used:
 - input to
 - output from
- Our SEH5E model has 217 items

Transitioning to Handbook IPO Diagrams



Representative GENESYS Diagram

GENESYS N² Diagram


Transitioning to Handbook IPO Diagrams

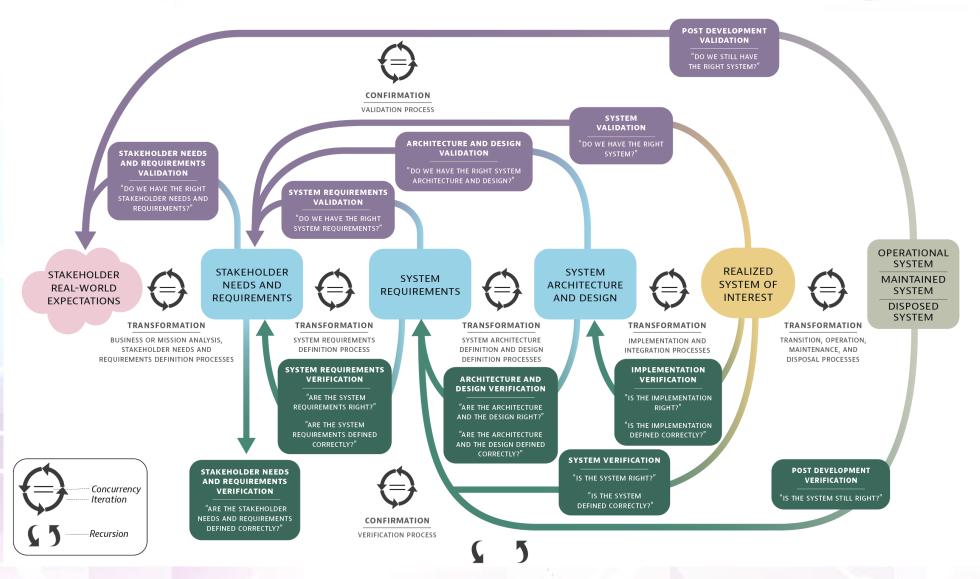
GENESYS N² Diagram

Handbook N² Diagram

Summary of Tool Usage for the SEH5E INCOSE

- Overall, the team had success using Jama Connect to capture and manage the numerous requirements for the handbook Fifth Edition
 - The tool created an organized structure, collaboration center, and easy to use coverage views to spot gaps in content, beyond what is possible in other documentation tools.
 - Requirements documents were easily generated from the tool.
- The team also had success using Vitech/Zuken GENESYS to model the system life cycle processes within the handbook, particularly in the area of typical process inputs and outputs.
 - The use of the model enforced necessary discipline in the identification and naming of the information items and defining the transfer of these information items between processes.
 - Still a need to "reformat" the IPO and N² diagrams for publication purposes.

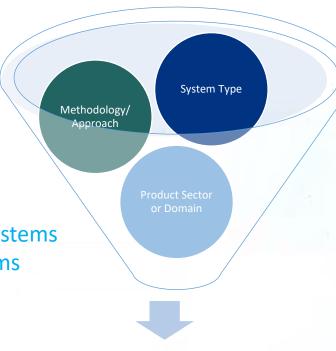
Figure 2.12 Concurrency, iteration, and recursion



www.incose.org

Figure 2.38 Technical processes in context INCOSE HANDBOOK

Table 3.1 Quality Characteristic approaches



QC Approach	An approach that	Representative QCs
Qe Approaci	The approach that	Representative Qes
Affordability Analysis	maximizes value, providing cost effective	Affordability, Cost-Effectiveness, Life Cycle
	capability over the entire life cycle	Cost (LCC), Value Robustness
Agility Engineering	enables change in a timely and cost-effective	Adaptability, Agility, Changeability,
	manner	Evolvability, Extensibility, Flexibility,
		Modularity, Reconfigurability, Scalability
Human Systems	integrates technology, organizations, and	Desirability, Ergonomics, Habitability, Human
Integration	people effectively	Factors, Human-Computer Interaction (HCI),
		Human-Machine Interface (HMI), Usability,
		User Interface (UI). User eXperience (UX)
Interoperability Analysis	ensures the system interacts effectively with	Compatibility, Connectivity, Interoperability
	other systems	
Logistics Engineering	enables support for the entire life cycle	Supportability
Manufacturability/Produci	enables production in a responsible and cost	Manufacturability, Producibility
bility Analysis	effective manner	
Reliability, Availability,	enables the system to perform without failure,	Accessibility, Availability, Interchangeability,
Maintainability	to be operational when needed, and to be	Maintainability, Reliability, Repairability,
Engineering	retained in or restored to a required functional state	Testability
Resilience Engineering	provides required capability when facing	Resilience, Robustness, Survivability
	adversity	
Sustainability Engineering	supports the circular economy over its life	Disposability, Environmental Impact, Sustainability
System Safety Engineering	reduces the likelihood of harm to people,	Safety
	assets, and the wider environment	
System Security	identifies, protects from, detects, responds to,	Cybersecurity, Information Assurance (IA),
Engineering	and recovers from anomalous and disruptive	Physical Security, Trustworthiness
	events, including those in a cyber contested	
	environment	

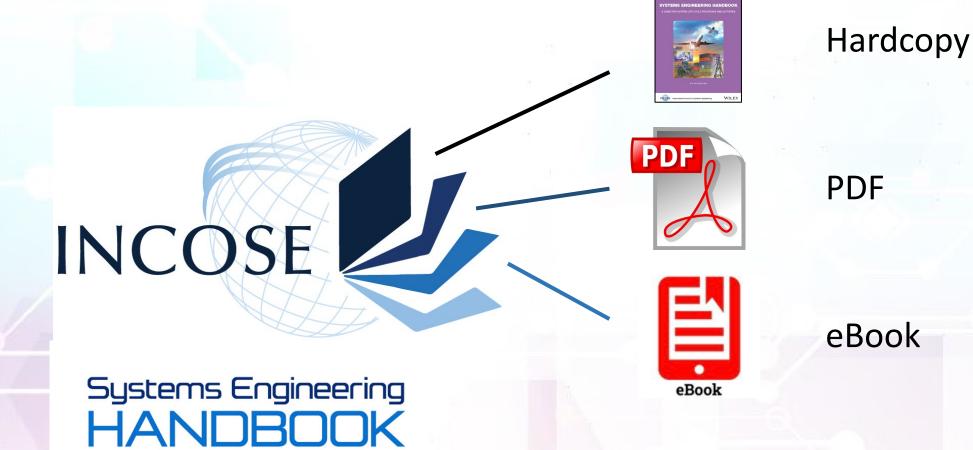
Considerations for Tailoring

- 4.2.1 Model-Based SE
- 4.2.2 Agile Systems Engineering
- 4.2.3 Lean Systems Engineering
- 4.2.4 Product Line Engineering (PLE)
 - 4.4.1 Automotive Systems
 - 4.4.2 Biomedical and Healthcare Systems
 - 4.4.3 Commercial Aerospace Systems
 - 4.4.4 Defense Systems
 - 4.4.5 Infrastructure Systems
 - 4.4.6 Oil & Gas Systems
 - 4.4.7 Power & Energy Systems
 - 4.4.8 Space Systems
 - 4.4.9 Telecommunication Systems
 - 4.4.10 Transportation Systems

Project Tailoring

- 4.3.1 Greenfield/Clean Sheet Systems
- 4.3.2 Brownfield/Legacy Systems
- 4.3.3 Commercial-off-the-Shelf (COTS)-Based Systems
- 4.3.4 Software-Intensive Systems
- 4.3.5 Cyber-Physical Systems (CPS)
- 4.3.6 Systems of Systems (SoS)
- 4.3.7 Internet of Things (IoT)/Big Data-Driven Systems
- 4.3.8 Service Systems
- 4.3.9 Enterprise Systems

Note: These considerations are not exhaustive nor mutually exclusive.


Topics

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

Anticipated Formats

Anticipated Fifth Edition Translations INCOSE

As of this time, we are aware of the following potential translations of the Fifth Edition. Either Wiley or the Chapters will lead the translations.

EMEA (and SA)

- French
 - AFIS (French Chapter)
 - Tunisian Chapter
- German
 - GfSE (German Chapter)
 - Swiss Chapter
- Italian
 - Italian Chapter
- Spanish
 - AEIS (Spain Chapter)
 - Colombia & Mexico (potential Chapters, localized versions of Spanish language may be needed)
- Turkish
 - Turkish Chapter

Asia-Oceania

- Chinese
 - Chinese Chapter (simplified characters)
 - Taiwan Chapter (traditional characters)
- Japanese
 - JCOSE (Japan Chapter)
- Korean
 - KCOSE (Korean Chapter)

Handbook translation focal points are Bernardo Delicado and Yip Yew Seng.

www.incose.org

Topics

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

INCOSE Certification

Exam Knowledge Basis

Expert Systems
Engineering Professional

Knowledge

Experience (25+ years)

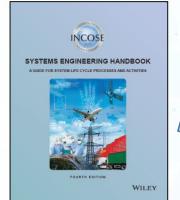
Leadership

Certified Systems
Engineering Professional

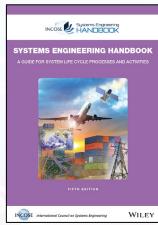
CSEP

Knowledge

Experience (5+ years)


Associate Systems Engineering Professional

Knowledge


ASEP

ESEP

48

Copyright ©2022 by INCOSE.

Permission granted to INCOSE to publish and use

SEH5E Impact to Certification Exam

- Starting on 1 August 2023, all exams are based on the overlapping content found in both the INCOSE System Engineering Handbook Fourth Edition and Fifth Editions.
- Content found in only one version of the other is not on the exam as of 1 August 2023.
- New content in the Fifth Edition may be added as soon as 1 August 2024 but no earlier.

Source: https://www.incose.org/systems-engineering-certification/taking-the-exam, as of 5 Oct 2023

The INCOSE Certification website is always the authority on the current transition status!

Topics

- What is the INCOSE SE Handbook?
- Overall impetus for change
- Handbook development process
- Top-level schedule
- Summary of the Fifth Edition requirements
- Summary of new content added for this version
- Formats & translations
- Impact to INCOSE Certification
- Questions & discussions

Questions & Discussions

Handbook Overview

www.incose.org